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Abstract

In this paper, we focus on a growth model where the discount rate
is decreasing in capital accumulation and endogenous growth is made
possible through learning by doing. Knowledge accumulation being a
by-product of gross investment. In such a model, the utility function
has to be restricted to take positive values implying that the elasticity
of marginal utility is lower than one. The presence of endogenous dis-
counting generates the existence of a steady-state of stagnation which
can be interpreted as a poverty trap. In the case of long run growth,
the fact that the elasticity of marginal utility is lower than one im-
plies the existence of two asymptotic balanced growth paths. The one
with the higher growth rate being a saddle point while the one with
the lower growth rate not being a saddle point. We also study the
optimal solution which is characterized by a unique balanced growth
path. The policy consists as usual in subsidizing investment in order
to internalize the externality.
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1 Introduction

The objective of the present paper is to introduce endogenous discounting in
a growth model where learning by doing is the engine of sustained per capita
growth in the long run. It is well known that the standard practice is to use
constant discount rates in growth theory and in macroeconomics in general.
Our objective consists in showing that the introduction of endogenous dis-
counting will allow us to shed light on some important stylized facts of the
growth process:

1) The world distribution of income is now bimodal with a group of countries
experiencing growth while another one seems to be stuck at lower levels of
development (Quah, 1996; Jones, 1997; Beaudry et al., 2005).

2) Among countries experiencing continuous growth, differences in terms of
growth rates and income levels can be observed (see, for example, Acemoglu,
2008).

3) The discount rate does not seem to be constant but decreasing in capital
accumulation (Lawrance, 1991; Samwick, 1998; Fielding and Torres, 2009).
On theoretical grounds, there is a strand of growth theory focusing on relax-
ing the assumption of a constant discount rate that is used in most dynamic
models. The first study goes back to Uzawa (1968) but this idea has not
received a lot of attention until the work of Obstfeld (1990). Both papers
suppose that the discount rate depends on the individual consumption level
of the agent. This implies that when taking their decisions, agents internal-
ize the impact of an increase in consumption on the discount rate (see also
Drugeon, 1998; Das, 2003). A different approach explored in the literature
supposes that the discount rate depends on so called social variables (such as
average or aggregate consumption, capital,...) that are not under the control
of the agent. In this case, endogenous discounting is seen as an additional
externality. The works of Shi (1999), Schmitt-Grohé and Uribe (2003) or
Meng (2006) enter in this category. Among the frameworks where agents
internalize endogenous discounting, some authors have chosen to focus on
other variables than consumption. Le Kama and Schubert (2007) choose en-
vironmental quality while Schumacher (2009, 2011) and Strulik (2012) focus
on the individual capital stock. The last two authors suppose that the dis-
count rate is decreasing in capital accumulation. It is this latter approach
that we are going to follow in the present work. The choice of capital as the
argument of the discount function is mainly driven by empirical evidence.
Capital can directly be related to wealth accumulation which in turn is pos-
itively correlated with lower mortality rates and thus lower discount rates
(Fielding and Torres, 2009). Moreover, authors such as Lawrance (1991) and
Samwick (1998) have found that the discount rate is decreasing in capital



and wealth in panel data analysis. One important implication of endogenous
discounting is that the sign of the utility function matters and can give rise
to opposite results depending on a particular choice (see Schumacher, 2011).
As we will see, when the discount rate is decreasing in capital accumulation,
a negative utility function would imply that welfare is decreasing in capital.
An outcome which does not make sense from an economic point of view and
leads us to choose a utility function that can only take positive values. How-
ever, this assumption implies the breakdown of the standard Mangasarian
second order conditions which require a negative utility function. We thus
derive appropriate second order conditions and choose our functional forms
in accordance.

The idea that learning by doing is an important determinant of the knowl-
edge of workers goes back to Arrow (1962). According to him, a good index
of the stock of knowledge is cumulated investment. Arrow used a vintage
approach in his work and Levhari (1966) showed that the results could be
extended to any homogeneous production function of the first degree. The
idea was integrated in the neoclassical growth model with optimizing agents
by Sheshinski (1967) and Romer (1986). The latter could demonstrate that
his model may generate long run growth with a fully endogenous growth rate.
In the present paper, we will follow the approach of Greiner and Semmler
(1996) and Greiner (2003), which supposes that one unit of investment does
not have the same impact on the formation of physical and knowledge cap-
ital. Moreover, their depreciation rates will also be different. This prevents
those two variables to be merged into a single one as it is the case in the
model of Romer.

We choose to focus on a learning by doing process since it is reasonably
tractable but also because empirical evidence has shown that investment
is clearly associated with positive externalities (see, DeLong and Summers,
1991; Hamilton and Monteagudo, 1998).

The combination of endogenous discounting with our learning by doing for-
mulation will generate the possibility of poverty traps as well as both local
and global indeterminacy. Poverty traps are a potential explanation con-
cerning the fact that some economies seem to be trapped at lower levels of
development (Azariadis, 1996). Local indeterminacy implies a continuum of
dynamic paths leading to the same balanced growth path while global inde-
terminacy implies the existence of multiple balanced growth paths (Benhabib
and Farmer, 1994). Indeterminacy is thus a potential way to explain why
economies with similar fundamentals might save and grow at different rates
in both the short and the long run.

A brief account of the results is as follows. We first argue that the util-
ity function should always take positive values in this framework and derive



appropriate sufficiency conditions in this case. We then choose specific func-
tional forms in accordance with this assumption. We derive next necessary
and sufficient conditions for the existence of a saddle-path stable steady-state
which can be interpreted as a poverty trap. In the case of long run growth,
we show that our model generates global indeterminacy with the existence
of two asymptotic balanced growth paths. The one with the higher growth
rate being a saddle point while the one with the lower growth rate not being
a saddle point. The latter can exhibit different dynamic behaviors such as
instability, local indeterminacy or a possible limit-cycle trough the existence
of a Hopf bifurcation. The study of the optimal outcome shows that there
is a unique asymptotic balanced growth path in this case. An appropriate
policy giving incentives to increase investment can ensure that all economies
converge toward balanced growth.

The structure of the paper is the following: section 2 introduces the model
and derives appropriate sufficiency conditions in the case of a utility func-
tion that can only take positive values. Section 3 studies the existence of
both steady-state equilibria and balanced growth. Section 4 focuses on the
optimal solution for this economy while section 5 finally concludes.

2 Model

2.1 Firms

The production side is based on Arrow (1962) and Romer (1986) where tech-
nological progress depends on gross investment. Firms are distributed along
the unit interval with a total mass of 1. The production of a representative
firm j is given by:

g = ki (Addy ), (1)

where the technological level shared by all firms is labor augmenting and
given by A;. k;; and [, ; are respectively the firm specific levels of physical
capital and labor at time t. « is the elasticity of physical capital in the
production function. We suppose that the aggregate quantity of labor is
equal to one:

1
L = /0 ldj = 1. (2)
Gross investment is the sum of firms’ individuals investments:
1 . .
B:A“W' (3)
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As in Greiner and Semmler (1996) and Greiner (2003), we assume that the
stock of knowledge capital is a by-product of gross investment according to:

t
A= ¢ / =01 .. (4)

The introduction of the weighting function ¢”*~" implies that new invest-
ment contributes more to knowledge than investment further back in time.
Differentiating expression (4) with respect to time, we obtain:

At = ¢l — nAy, (5)

with Ag given.

¢ > 0 shows how much a unit of investment contributes to the increase in
knowledge and n > 0 is the depreciation rate of knowledge capital.

The production function for the overall economy is given by:

Yy = f(Ata kt) = Atl_ak? (6)

Since the aggregate quantity of labor is equal to one, per capita and aggre-
gate variables are equal in this setting. In the competitive equilibrium, each
firm will ignore the impact of its own investment on knowledge accumula-
tion implying that they don’t take into account the evolution of knowledge
capital. Only a benevolent planner will be aware of the presence of the gross
investment externality.

2.2 Preferences

As explained before, our model introduces an endogenous discount rate de-
creasing in capital. The intertemporal discounted utility function of the
representative agent is given by:

Ucr, (kL) = /0 T ule)e . (7)

The discount rate 6(¢) > 0 depends on past and current levels of capital in
the following way:

0= [ oth)s, (8)

where p(k) is the discounting function for which we assume that p'(k) < 0
such that wealthier agents are more patient than poorer ones.
The utility function is twice continuously differentiable and follows standard



concavity properties, such that «/(¢) > 0,u”(c) < 0 and lim._,0 v/(¢) = co. In
the forthcoming analysis, we will use a constant intertemporal elasticity of
substitution (CIES) utility function which will take the following functional
form:

l—0o

u(c) = (9)

C1-—0’

with o > 0 representing the inverse of the intertemporal elasticity of substi-
tution.

Before proceeding, we should focus on the importance of the sign of the utility
function in endogenous discounting models. In the present case, preferences
being recursive, a change in the capital stock will not only have an impact on
present utility but also on the way the representative agent perceives future
utility gains. In order to compute the marginal utilities, we will rely on the
Volterra derivatives with respect to consumption and capital. The Volterra
derivative gives the rate at which intertemporal utility changes with respect
to a small increase in consumption or capital near a given time t. In the
present case, we obtain:

Ue = u/(c)e oot (10)
Us = —pf ke lortts [ue e dimaings )
t

It can be observed that the Volterra derivative with respect to consumption
is always positive while the one with respect to capital is negative if u(c) < 0
and positive if u(c) > 0. This suggest that in the case of negative utility a
higher capital level decreases intertemporal utility. Subsequently, a higher
discount rate can be seen as something good in the sense that it increases
total welfare. The lack of economic intuition given by these results suggests
that in the present framework, we should use a utility function that only
takes positive values as in Schumacher (2011). Note that this is not a more
general statement and that the choice of the sign of the utility function should
always be based on the respective Volterra derivatives of each model. Given
that we will use a a CIES utility function, from now on we will suppose
that 0 < 1. This assumption goes against most standard estimates of the
intertemporal elasticity of substitution suggesting values below one. Two
remarks are in order here: first, most of these estimates have been derived
assuming a constant discount rate which is a fundamental difference with the
present framework. Second, recent contributions such as Mulligan (2002),
Vissing-Jorgensen (2002) as well as Vissing-Jorgensen and Attanasio (2003)
provide estimates significantly larger than one. Kapoor and Ravi (2010) as
well as Gruber (2013) providing robust estimates in the interval (2, 3).
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2.3 Sufficiency conditions and the discount function

If we choose to proceed with a utility function that only takes positive values,
a different kind of problem arises: it can be proved that the Mangasarian
sufficiency conditions are satisfied only if u(c) < 0 (see Schumacher, 2011),
so that if one decides to proceed with positive utility, it is necessary to derive
appropriate sufficiency conditions. We proceed with our CIES utility function
where 0 < 1 and derive these conditions in the following.

Our optimization problem can be written in the following way:

oo t
max/ u(cy)e” Jo plks)ds gy (12)
0

ct, ki

subject to
ley = f(Ay, k) — o — Oky Wt
ki >0,A>0,¢, >0 vt
with ko and Ag given,

where § > 0 is the depreciation rate of physical capital.
As db;/dt = p(k;), we can write dt = db;/p(k;) and obtain the following
Hamiltonian ':

=7t (f(A k) —c— (5k>
HAr= 77—+ A ’ : 13
>~ =0 (%) )
The first order condition for the control variable is given by
c %l =\ (14)

Let’s rewrite ¢ = (%)1/0 and substitute this in the Hamiltonian in order to
obtain the Hamiltonian along the optimal path. Now let’s take second order
conditions with respect to k to see if the Hamiltonian is indeed concave along
the optimal path. In this case, we don’t need to do the same for A since we
are focusing on the competitive equilibrium. The first-order condition is

given by

OMs _ JilAk) 0
ok p(k)

{(5) - (5) )

'From now on, we drop the time dependency for convenience.




while the second-order condition is given by

PHs o (000 A
o A<p<k> 2p<k>2>“

o (AR

20" (k)A ( (F)? ) :

Since Ha > 0, the Hamiltonian is concave if the following two conditions are
satisfied:

P (k)
p(k)

fu(AJk) =6
fin(Ak) < 29/ (k)———~—.

p(k)

These two conditions imply that the discounting function should be suffi-
ciently convex while the production function should be sufficiently concave.
For example, an AK production function would not satisfy the second suffi-
ciency condition.

Given our production function y = A'™“k®, we propose the following dis-
counting function:

p'k) > 2

p(k) =P+ poe™™",

where p > 0. This discounting function is indeed decreasing and convex in
capital. Concerning the minimal discount rate p, both a zero or a positive
value can be considered. We can imagine that very rich agents can afford not
to discount future utilities as well as that individuals will always discount the
future for different reasons such as the difficulty to value future enjoyments
(see, for example, Becker and Mulligan, 1997), the fact that there is always
a relative preference for the present or the possibility of death or extinction
(Stern, 2007). We now need to check if our production and discounting
functions satisfy our sufficiency conditions. In this specific case, we obtain:

1—x
— ﬁk“f
(po + pe ) (1 - 75[&) > 2o, (17)
aA7(1 - « + 0P — 2B~vpok?

Concerning the first condition, we can see that the limit of the left hand side
of expression (17) when k£ — 0 is oo if v < 1 while when k& — oo, the limit
is oo for any value of 7. We thus choose to impose v < 1 in our discounting



function such that the condition is satisfied for low and high values of the
capital stock.

Concerning condition (18), when k — 0, the limit of the left hand side is occ.
We also impose that v > «a so that when £ — oo, the limit is oo as well. The
second condition is then satisfied for low and high values of the capital stock
provided that @ < v < 1. With this restriction in hand, we can proceed with
the competitive equilibrium.

2.4 Competitive equilibrium

Since we are in the competitive case, the physical capital stock evolves ac-
cording to:

k=rk+w—c—0k (19)

where 7 is the interest rate and w is the wage. The interest rate and the
wage are given by marginal productivities:

ro= aATk* (20)
w = (1—a)A"k" (21)

By taking the derivative of expression (8) with respect to time we obtain:
é =p + poeiﬁkw, (22)

which can be used as a second state variable concerning the evolution of the
discount rate. The representative agent then solves the following problem:

00 lea
max/ —e7dt, (23)
¢k Jo — 0
subject to
k=@ —0k+w—c Vi
0 =D+ poe vt
E>0,c>0 vt

with kg given.
We write the present value Hamiltonian of the above system:
l1-0o

H= 1_06_9+)\[(r—(5)k‘+w—c] — (P + poe™). (24)




The first order necessary and sufficient conditions for optimality are:

o, _—0

c e’ = A (25)

A — 8) + Buyk " ppe K = A, (26)
Cl—a B .

_1 _ O'e ‘= 2 (27)

As explained in Michel (1982), the transversality condition is modified in
infinite horizon problems and the appropriate one is given by expression
(28).

By solving the model, using the equilibrium values for » and w and adding
the evolution of knowledge capital we obtain the following dynamical system:

E‘ _ OéAlfakjafl — 5= ﬁ _ poefﬁlﬂ N #,yﬁcakxyflpoefﬁkﬂ
c o oe? ’
(29)
ko= A7k —c— bk, (30)
lea p
Vo - 1
fi e, (31)
A = QAR — o) — A, (32)
(33)

lim Ht = 0,
t—o00
with ko and Ay given.

Lemma 1:
The previous dynamical system can be reduced to the following three dimen-
sional system:

aAl—epa—1 _ 5 _ 7 — poe—ﬁlﬂ

¢
I 4
. - (34)
y-1 .
ﬁw(ﬂi ( c_ . k) ’
o(po+ pePF) \1—0o
k ¢
R Alfoz a—-1__ =
: k A (35)
A c
i A% 2

with ko and Ay given.
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Proof. First note that the Hamiltonian is autonomous. Differentiating the
Hamiltonian with respect to time we obtain:

dH_OH  OH. O, OH, OH; OH.

— = —+ —C+ —k+—0+—=—X— —
i~ ot Tact TaR" T e T T apt (37)
Using the first order conditions for optimality:
dH oH .. .. .
— = — —Ak+kX+ 00 —0; 38
7 AT + kA4 6 — 6, (38)
dH OH
o 39
dt ot (39)
Since the Hamiltonian is autonomous, %—7;[ = 0. Combining this result with

the transversality condition, lim;_,, H; = 0, implies that the Hamiltonian
takes the value zero along the optimal trajectory.
We now have a solution for u by transforming the Hamiltonian:

= c e lc+(1— a)l%]
(1= 0)(P+ poe= ")

(40)

Replacing p by its value in the differential equation for consumption yields
the desired result. O

Expression (34), (35) and (36) capture the dynamics of our economy.

The consumption equation can be separated into two terms: the first one is
similar to a neoclassical accumulation equation where the depreciation rate
of physical capital and the endogenous discount rate are subtracted from the
marginal productivity of capital. The second is a positive term taking into
account the indirect effect of a decreasing discount rate on the growth rate
of consumption. Given this additional term, the growth rate of consumption
is an increasing function of the consumption level and of the growth rate of
capital.
Concerning the physical and knowledge capital accumulation equations, both
processes are similar. In fact, if we set ¢ = 1 and 0 = 7, both variables can
be merged into a single one similarly to Romer (1986). We are going to
assume in the following that the depreciation rate of knowledge capital is
higher than the one for physical capital so that 6 < 7. Several empirical
studies have confirmed that this is indeed the case in actual economies (see,
for example, Nadiri and Prucha, 1996; Park et al., 2006). The reason behind
these results might be that since technological change has been accelerating
in western countries (at least before the 2008 crisis), it was to be expected
that existing knowledge would become more rapidly obsolete.
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3 The dynamics

In this section, we study the different dynamic behaviors that can be observed
in the competitive case. We first focus on the existence of a steady-state
equilibrium and then analyse balanced-growth.

3.1 Steady-state equilibrium

Definition 1:

A steady-state equilibrium of this economy is a solution (¢, k¢, A;) to equa-
tions (34), (35) and (36) given ko and Ap, such that g. = gx = g4 = 0, where
g represents the growth rate of the respective endogenous variables.

Setting ¢ = k= A =0, we obtain:

-«
€= Vﬁlpo : (f) —8=p—poe ™ | (0 = D)(po+ pe™ )E
(41)
- ¢5 - -
= RS -0l k 4
’ {( U ) ] ’ )
1= Y (43)

n

In this case, we can proceed with the first two steady-state equations (41)
and (42) since at the steady-state A is a function of £ only. We now make
a crucial assumption concerning some parameters of the model. We suppose
that 6 +p < a(¢d/n)'~* < § +p + po so that at a steady-state equilibrium,
accumulation does not proceed only because of the endogenous discounting
effect and not because of a too low rate of interest compared with the depre-
ciation and the minimal discount rates.

Proposition 1: In this economy:

(i) A necessary and sufficient condition for the existence of a steady-state
is that the steady-state capital stock satisfies the following condition:

E < {—; In [a(q%/n): —0- p] }w . (44)

(ii) There are two steady-state equilibria: the trivial one (co, ko) = (0,0)
and (El,k‘l) > (O, O)
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(iii) (2o, ko) is unstable while (¢, k1) # (0, 0) is saddle-path stable.

Proof. We start with part (i) of the proposition. As can be seen from expres-
sion (41), the existence of a steady-state equilibrium with values for ¢ > 0 is
possible if and only if

l-a
a <q;5> —0—-p< poe’ﬁkv, (45)

given that 0 < 1 by assumption. Rearranging the expression as a condition
on the steady-state level of capital, we obtain expression (44).
Concerning part (ii), we study the following function:

YBpo n

. [(ff)” . 5] " 6)

which is continuous for all k£ € (0,+00). A steady-state equilibrium is given
by values of k for which g(k) = 0. We first take the limits of our function:

glk) = ! [a <¢5> . 0—p— poemﬂ] (o0 —1)(po + pe’* )k

lim g(k) =0, lim g(k) = —oo.

Its derivative is given by

Jgk) = it} {a (gbé) : —0—p— poeﬁml (e —1)(po vatz'Bm)k:’V

YBpo 1
l—«
tola (D) s poeﬁ’“] (0 = 1)pes®
Po n
11—«
+(o = 1)(p + poe” BEY) — [(T) - 5] : (47)

And the limits of the derivative are
. / _ : / —
lim ¢/ (k) = +o0, lim ¢'(k) = —o0.

These results indicate to us that there are at least two steady-states and
always an even number of them. The first one displays consumption and
capital levels equal to zero.

We want to prove next that we only have two steady-states. In order to do
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so we show that ¢’(k) = 0 has only one solution so that there is a unique
inflexion point. We set ¢'(k) = 0 and study this function:

! [a (@“) e p] (0= DI = 7) (00 + 7™ K + Bype™ |

VBpo U]
+(1=7)pol(1 =) (@ + poe™ ™)k~ + B77]
= (1= o)+ poe™ ™) + (“ff) 4. (48)

We label the left hand side m(k) and the right hand side n(k). the limits are
given by

lim m(k) = o0, lim m(k) = —o0,
k—0 k—+o00
¢5 11—«
,{igrg)n(k)Z(l—U)(po+p)+<n> 50,
li (k)y=1—-0)p+ (b—é 1_Oé—5>0 (49)
Jm nk) = 1=+ (T -

We can moreover observe that m(k) is necessarily decreasing for a sufficiently
high level of k& while n(k) is decreasing in k and becomes constant in the
limit. Using these results we can conclude that m(k) and n(k) only cross
once implying that there is a unique inflexion point and thus two steady-
states: (@, ko) = (0,0) and (¢, k1) > (0,0).

For part (iii), we're going to proceed with a phase diagram analysis. The
steady-state curves are given by expressions (41) and (42). Expression (42)
is increasing and linear and goes from (¢, k) = (0,0) to (¢, k) = (4+00, +00).
Expression (41) goes from (¢, k) = (0,0) to (¢, k) = (—00,4+00). Since we
know that there are two steady-states, one of which does not exhibit positive
levels of capital and consumption, we can draw the phase diagram given in
figure 1. As can be seen, (g, ko) = (0,0) is unstable while (¢;, k;) > (0,0) is
saddle-path stable. O

The existence of a saddle-path stable steady-state implies that economies
starting with an initial level of capital that is lower than a certain level will
not be able to reach growth in the long run. This is the case even if the
net rate of interest is positive and higher than the minimal discount rate.
Moreover, the steady-state capital stock is bounded above by condition (44)
implying that a steady-state is only compatible with relatively low values of
the capital stock. Since long run growth is a possible outcome of the model
given the learning by doing process, this steady-state can be interpreted as a
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poverty trap (Azariadis, 1996; Azariadis and Stachurski, 2005). The reason
for this outcome is that a relatively small capital stock implies in return a
large discount rate and thus low incentives concerning capital accumulation.
The relatively low investment affecting as well the accumulation of knowledge
capital. The overconsumption effect due to endogenous discounting makes
the dynamic path unsustainable in the long run driving the economy toward
a steady-state of stagnation.

Figure 1: Phase diagram

J k=0

(€1, k1)

(o, ko)

k

The phase diagram exposed in Figure 1 includes both steady-states curves
(k =0 and ¢ = 0) as well as the stable arm given by the curve with arrows.
Given the arrows of motion, the first steady state (¢, ko) = (0,0) is unstable
while the second (¢, k1) > (0,0) is saddle-path stable.

3.2 Asymptotic balanced growth path equilibrium

In this section, we study the existence of balanced growth where consump-
tion, output and capital grow without bound at a common positive constant
rate. As it has been proved in Palivos et al. (1997), a necessary and sufficient
condition for the existence of a BGP is that the elasticity of marginal utility
and the discount rate be constant along this path. This is not the case in our
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model since the discount rate is endogenous. Nevertheless, we can apply the
concept of an asymptotically balanced growth path (ABGP) to our problem.

Definition 2:

An ABGP equilibrium of this economy is a solution (¢, k¢, A¢) to equations
(34), (35) and (36) given ky and Ap, such that lim. o g = limg 00 gp =
lim 40 ga > 0.

In order to draw some conclusions from the ABGP, the usual method is
to operate on variables which are constant along the ABGP. From our dy-
namical system, we know that a constant growth rate for capital obtains if
z = k/A and x = ¢/A are constant. x is the consumption to knowledge
capital ratio while z is the capital to knowledge capital ratio.

We first determine the differential equations for z and x:

g, = —6+n—§+¢x+(l—¢z)za_l, (50)
a—1 _ 6 = —BkY
g = — ap Pof +n+ pr — P2
_ a-1 _ 24
A=) d) + ox]ypoBk | (51)

(1= 0)(po + pe*”)
with z(0) given.

Proposition 2: In this economy:

(i) An ABGP equilibrium exists only if p > 0.
(ii) Since 6 < n and o < 1, there are two ABGP equilibria.

(iii)) The ABGP giving the higher growth rate is saddle-path stable while
the one yielding the lower growth rate cannot be a saddle-point.

(iv) The ABGP giving the lower growth rate can be locally indeterminate,
unstable or generate a possible limit-cycle through a Hopf bifurcation.

Proof. We will first show that p > 0 is a necessary condition for the existence
of an ABGP equilibrium. Let’s first suppose that p = 0. In this case, the
limit of the differential equation (51) is given by

a=1_ 5§ _ = _ . kY
lim g, = lim <az 0 =P poc +n+ ¢ox — gzﬁza)
k—o0 k—o0 o
1 — a—1 _ 0
+lim [(1-0)(z 0) + ox]|yBk ’ (52)
k—00 o(l—o)
= —|—Oo’
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since 0 < 1. An ABGP equilibrium cannot existence in this case since the
consumption to knowledge capital ratio grows constantly. Now if p > 0,
the limit of expression (51) is indeterminate since both k7 and e°*" grow
continuously. Making use of L’Hopital’s rule:

2

lim = lim ———
koo ePkY k—s00 Beﬁkw

— 0. (53)

We can conclude that the last term on the right hand side converges to zero
and thus lim,; ,. & exists and is finite.
From expressions (50) and (51), we obtain our steady-states equations:

lim g, = —0+n— lim Ty ¢ lim 2 + lim (1 — ¢2)2*, (54)
k—o0 k—oo 2 k—o0 k—o0

li O )
lim g, — Mmoo P n+olimae—¢lim2®, (55
k—o0 o k—o0 k—o0

= 0.

We can now study the possible existence of ABGP equilibria. In order to
do so we first label limj_,. 2 = Z and lim;_,.. £ = X. Notice first that our
assumption § < n requires ¢Z > 1 for A1=*k® > ¢. From expression (54), we
get X that we plug into (55) to obtain:

(n—®¢Z+aZ”4—5—ﬁ

MZ)=n+ 1—oZ o

(56)

A Z that solves h(Z) = 0 also solves hy(Z) = h(Z)Z'™*(1 — ¢Z) = 0 with
Z'=*(1 — ¢Z) # 0. We choose to analyse the function h(Z) instead of h(Z)
where:

hﬂZ%=au_¢Z)+<n—p§5)Zl“+¢<p+5—5>22% (57)

o

which is continuous for all Z € (0, 4o00). The derivative of hy(Z) is given by

4(z) = %) (-2 7
+6(2 — @) <p ;L o (5> ze (58)

Concerning the terms in hi(Z2), it should be notice that the last term on the
right hand side takes positive values since o < 1+ p/d given our previous
discussion about endogenous discounting models. As stated before, § < n
implies ¢Z > 1 so that the first term takes negative values. We thus only
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need to explore two cases which exhibit different signs concerning the second
term of expression (57):

Case 1: n < (p+6)/o

We first take the limits of hy(Z) and R} (Z):

%13%)h1(Z) =afo > O’ZE)IEOO hi(Z) = +oo,

. / _ . / _

élir%) h(Z) = OO’ZEIEOO hi(Z) = +o0.
These results combined with the fact that A{(Z) > 0 for all Z > 0 imply
that in this case we have two ABGP equilibria.

Case 2> (p+0)/o
We take the limits of hy(Z) and k| (Z) in this case:

lim hy(Z) = afo > O’ZEI—POO h(Z) = 400,

Z—0
. ! _ : / _
lim h(Z) = —i—oo,Zgr}rloo hy(Z) = 4o0.

Since h{(Z) = 0 has only one solution given by Z = a(p + 6 —no)/p(2 —
a)[p+ (1—0)d] > 0, only two ABGP equilibria can exist in this case as well.
We can now study the local stability of the system around the asymptotic
steady-state. In order to realize this task, we first compute the Jacobian
matrix at (X, Z) using expressions (55) and (54) to obtain:

_ oX  —[eelze? 4 gazel| X 1
. l ~(1-92) X/Z—(1-0a)2°7" — paz" | (59)
The Determinant of our matrix is given by
o ¢(77 — 5) Oé(l B Oé) a—
Det(J) = (1—¢2)X [(1 7 — . A 2] ) (60)
We can further notice that
/ o ¢(77 _ 5) Oé(l — Oé) a—2
W(Z)= (1= o7) — > 7z, (61)

A necessary and sufficient condition for saddle-path stability is Det(J) < 0.
We thus need to study the sign of A/(Z) at both ABGP equilibria. We
already know that Z € (¢!, +00) and the function h(Z) has the following
properties:

545
lim h(Z) = —oo, lim h(7)=5— 2P g
Z¢1 Z-+o0 o
lim A'(Z) = —oc0, lim K(Z)=0.
Z—¢—1 Z—+00
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From the previous results, we know that 1 — ¢Z < 0, h/(Z) > 0 at the

first (lower) Z and h'(Z) < 0 at the second (larger) Z. Consequently, the

first ABGP (lower Z) is saddle-path stable while the second one (higher Z)

cannot be a saddle point.

The growth rate of consumption along an ABGP is given by
aZt—6—-p

kEr—Poo ge = o ’ (62)

The ABGP with the lower Z which is saddle-path stable also exhibits the
highest growth rate since o < 1.

We can now study the possible behavior of the ABGP giving the lower growth
rate. From our previous result, we know that in this case Det(J) > 0. The
stability outcome will thus depend on the Trace of the Jacobian matrix which
is given by

¢Z +1)(n = 9)

TT(J):( 1= o7

+ (1 —a)pZ% + az* . (63)

If Tr(J) > 0 the ABGP is unstable while if Tr(J) < 0 it is locally inde-
terminate. Finally, if Tr(J) = 0 the ABGP undergoes a Hopf bifurcation
which can generate a possible limit-cycle. In this case, the system would
permanently oscillate around the ABGP equilibrium. O]

The existence of an ABGP thus requires a positive minimal discount rate.
Indeed, without this condition, the growth rate of consumption would divert
toward infinity. The model then requires that at every period of time, the
representative agent keeps a preference for the present. As expressed before,
this does not seem to be a too strong requirement. The second condition
is more important and tells us that since the elasticity of marginal utility is
lower than one in this framework, we obtain the existence of two balanced
growth paths and thus global indeterminacy. This result comes directly from
the restriction on our utility function due to endogenous discounting. Con-
cerning the behavior of actual economies, this result gives us a potential
explanation concerning the fact that similar developed economies can dis-
play differences in terms of growth rates in the long run (Acemoglu, 2008).
The ABGP with the higher growth rate is saddle-path stable and in the case
where the second ABGP is unstable, this is the only long run equilibrium
to which all economies will converge. A more interesting case is obtained
when the second ABGP is locally indeterminate, since in this case, some
economies will converge toward the ABGP with lower growth. However,
these economies will experience differences in terms of growth rates during

19



the transition to the ABGP giving a potential explanation to short run dif-
ferences among similar economies. Finally, if the ABGP undergoes a Hopf
bifurcation, it is possible that these economies experience everlasting fluctu-
ations around the low growth ABGP equilibrium. A last interesting result is
that the joint existence of a steady-state of stagnation if the initial capital
stock is too low and of balanced growth is compatible with the so called
twin peaks of economic growth. As documented empirically (Quah, 1996;
Jones, 1997; Beaudry et al., 2005), the world distribution of income has been
changing from a somewhat unimodal distribution toward a bimodal one with
a group of countries experiencing continuous growth while another one seems
to be stuck at lower levels of development and is thus unable to catch-up.

4 Optimal solution

The only difference between the competitive and the optimal case is that the
social planner is aware of the evolution of knowledge capital. The feasibility
constraint is given by

k= AYOkY — ¢ — 6k, (64)

The social planner solves the following problem:

00 Cl—a
max/ e dt, (65)
o 1

C,k,A — 0

subject to
k= A"k — ¢ — 5k vt
A=g(AV" k> —¢) —nA Vi
0 =7+ poe ¥ vt
k>0,4>0,c>0 vt
with kg and Ag given.

The introduction of the additional constraint does not change the results con-
cerning second-order conditions and we can proceed with the first order ones
which are also sufficient. We have the following present value Hamiltonian:

Cl—a

H = 1—6*9 + A (ATORY — ¢ — 0k) 4 Xo[p(AV Ok — ¢) — nA]
—0
—pa(p+ poe ™). (66)
The first order necessary and sufficient conditions for optimality are

% = A\ + P, (67)
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“Mo= (A ) A T R T = N+ ByEY  poe T, (68)
XA = (M +oX)(1 —a)ATkY — Ao, (69)
l1—0o
. C _
- = e, (70)
lim H, = 0. (71)

By solving the model and using Lemma 1, we obtain the following dynamical
system:

y-1 . Ao
a(f)zc)f];@ﬁm L f i m(n - ¢5)]
| et (72)
—i\\i = )\1—;1(%20(141_“/{‘1_1 -4

E T A . A
N TR

A1
Ao A+ O

2 = 2 TR o) ATk — 4
N N (1 —a)A™ k" —n (74)
k . l-aj.a—1 c
%. = A'7%% P J, (75)
A e C
7 = AT =), (76)

with ko and Ay given.

The main difference between the competitive and the optimal outcome is
that the marginal cost of a unit of consumption is higher in the latter since
the planner takes into account the positive impact that investment has on
knowledge accumulation. As in Romer (1986), the policy consists in giving
incentives to increase investment: this can be done for example by introduc-
ing a lump-sum tax which is used to subsidize investment.

We are now going to study the existence of asymptotic balanced growth in
the optimal case. As before, we can apply the concept of an asymptotic bal-
anced growth path equilibrium to our economy since the discount rate is only
constant in the limit. As can be noticed from our dynamical system in this
case, in addition to z = k/A and z = ¢/A, w = A\ /A, should also be constant
in order to obtain a constant and equal growth rate for capital, consumption
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and knowledge. We can now determine the differential equations for z, z and
w:

g. = —0+n-— §+¢x+(1—¢z)z°‘_1, (77)
L e A— ) =5 e = 6y~ )/ (w4 0)
g
re= o] he e RAATREN
g = ~(1+ Doz 46+ (W 0)(1 )"
(I +o/w)Bypok” | x/2 on=
ey (L5 o) o

with zy given.

Proposition 3: In the optimal economy:
(i) An ABGP equilibrium exists only if 5 > 0.
(ii) The ABGP equilibrium is unique.

Proof. Concerning (i), the proof is similar to the first part of Proposition
2. If p =0, g, and g,, converge respectively to +00 and —oo which is not
compatible with the existence of an ABGP. If p > 0, the limit in both cases
exists and is finite since limy_,o, k7 /e = 0.

Concerning (ii), labelling limy_,o 2 = Z, limg_0o ¢ = X and limg_,oo w = €,
we obtain our steady-state equations:

klggogz = —5+77—)Z(+¢X+(1—¢Z)Za_1, (80)
g, = SO a2 =07 6l 3)(6+0)
+n+ X — 927, (81)
]}Lrgogw = —(1+ g;)aZal +0+(0+Q)(1—a)Z* —n, (82)
= 0.

From expressions (80) and (82), we obtain respectively values for X and ¢+
that we plug into expression (81) in order to obtain

o

—a+(0+p—on)zt-— %Z%a'

0= (83)
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Q) is now a function of Z and of parameters only. The limits of () are given
by

lim Q2 =—¢, lim Q=0.

Z—0 Z—+00
We can now use these results in order to study the existence and uniqueness
of the ABGP. We study the following function:

d(Z) = —(1+ Qj’z))azal Yo+ (0 QDA — )2 — . (84)

We have the following limits:

limd(Z) = nlc—1)—p<0,
lim d(Z) = +oo.

Moreover, it can be proved that d(Z) is increasing so that there is a unique
value of Z for which d(Z) = 0 and thus a unique ABGP. O

The fact that the ABGP is unique implies that an appropriate policy might
play an important role in two ways: it will first allow economies stuck in the
poverty trap to overcome the latter and converge toward balanced growth.
Second, it will eliminate the growth differential observed between the two
balanced growth paths of the competitive case and bring these economies to
a ABGP with higher growth. As explained before, the policy should consist
in giving incentives to increase investment. It should be noticed that this will
induce two effects: the first being the standard increase in the interest rate
while the second being a decrease in the discount rate due to an increase in
the capital stock. This latter effect will further enhance capital accumulation.

5 Conclusion

The present paper has focused on the interaction between endogenous growth
driven by a learning by doing process and endogenous discounting. The ne-
cessity to consider a utility function that takes only positive values due to
our endogenous discounting formulation has important consequences in this
framework. We proved the existence of a saddle-path stable steady-state
which can be interpreted as a poverty trap. This steady-state exists despite
the fact that the net rate of interest is higher then the minimal discount
rate at the steady-state. This result might partially explain why countries
that have some growth potential are stuck at lower levels of development and
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seem unable to catch-up. In the case of balanced growth, a positive utility
function combined with a rate of depreciation higher for knowledge capital
implies the existence of two asymptotic balanced growth paths. This global
indeterminacy result is a potential explanation concerning the growth differ-
ential observed in the long run among otherwise similar developed economies.
Moreover, the dynamic behavior of the low growth ABGP equilibrium gives
us a potential explanation for short run growth differences (the equilibrium
can be locally indeterminate) or long run fluctuations (potential existence of
a limit-cycle). The joint existence of a poverty trap and balanced growth
depending on the initial level of capital is in accordance with the so-called
twin peaks of economic growth. The results concerning the optimal outcome
show that the latter is globally determinate implying that an appropriate pol-
icy might allow all economies to converge to the same asymptotic balanced
growth path in the long run.
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